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Abstract-In this paper, we explore the information dissemination prob- 
lem in ad-hoc wireless networks. First, we analyze the probability of suc- 
cessful broadcast, assuming: the nodes are uniformly distributed, the avail- 
able area has a lower bound relative to the total number of nodes, and there 
is zero knowledge of the overall topology of the network. By showing that 
the probability of such events is small, we are motivated to extract good 
graph topologies to minimize the overall transmissions. Three algorithms 
are used to generate topologies of the network with guaranteed connectivity. 
These are the minimum radius graph, the relative neighborhood graph and 
the minimum spanning tree. Our simulation shows that the relative neigh- 
borhood graph has certain good graph properties, which makes it suitable 
for efficient information dissemination. 

I. INTRODUCTION 

The concept of collectively utilizing distributed sensor mod- 
ules in a hierarchical manner was first introduced as cooperative 
.sensor net?.vorkin,a [I]. An extension of this idea is to prolong 
the life-time of finite energy sources by leveraging cooperative 
modulation techniques [2]. This technique relies heavily on the 
efficient usage of battery power on the local communication link 
and requires some sharing of information: which motivates our 
investigation into the information dissemination problem. 

The connectivity among nodes directly influences the effi- 
ciency of information dissemination within a network. Conven- 
tionally, the topology of an ad-hoc network is defined by the 
transmission radius d of each node. Due to the dynamic and 
ad-hoc nature of such networks, using a fixed d might not ren- 
der a connected network at all times. Sometimes, the network is 
partitioned into several connected components where each com- 
ponent is a connected sub-network, but there are no connections 
between the different sub-networks; we call this a partitioned 
network. 

In [3], Gupta and Kumar showed that, given n nodes such 
that each node covers a RF circular area r d & ,  = n, 
then the network apprcaches connectivity with prohabi!ity 1 as 
c (n ) ,  the connectivity measure in [3] approaches infinity, syn- 
onymous to the number of nodes approaching infinity. We ex- 
amine the alternate extreme of relatively sparsely spaced nodes 
and the probability of distributing a piece of information in a 
multi-hop manner from a node to all other nodes in the network, 
with a fixed number of transmissions. 

In this paper, we examine information sharing (as gossip) for 
the objective of leveraging cooperative modulation techniques 
that requires each node to communicate its information to all 
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other nodes. Formally, the gossip problem is defined in [4] as 
the all-to-all communication problem, where each node holds 
a piece of independent (or disjoint) information. The set con- 
taining the union of information from all nodes is called the 
cumulative information of G. The gossip problem is to find a 
communication strategy such that each node from the set of all 
nodes, V acquires the whole cumulative information. 
In the cooperative sensor network model, aggregation and 

multiplexing might not result in energy-per-bit gains. Thus, 
the gossip problem can be considered as n separate broadcasts, 
where n is the number of nodes. We analyze the probability 
of successful broadcasting from a source node, using a fixed 
number of transmissions. We assume the nodes to be randomly 
placed, and there is no knowledge of the topology of the net- 
work. As expected, for large areas (Le. areas where the dense- 
ness of the nodes is not a considerable factor), the probability 
of successful broadcast is low, motivating our investigation into 
specific network graph topologies guaranteeing connectivity for 
information dissem-ination. We pmpose three classes of graphs 
and examine their graph properties to determine their suitability 
for broadcasts in a gossip manner. 

11. PROBABILITY ANALYSIS OF BLIND BROADCAST 

We now characterize the total number of transmissions re- 
quired for blind broadcast, which is topology independent and 
without any knowledge of the topology. The node originating 
the broadcast is the source node. We now formally define con- 
nectivity. 

Let l i ,  l j  E R2 be the locations of nodes vi and v j  respec- 
tively, where vi # v~j .  Direct connectivity between any pair of 
nodes vi and vj is defined by the transmission radius d. Specif- 
ically, for vi and wj, we have 11 l i  - Ej / /  5 d ,  where the norm 
used is the Euclidean norm &e.; L2-norm). We say that vi 
and w ~ j  have multi-hop connectivity if there is a non-empty set 
of nodes P with size /E ' / ,  where the nodes of P are labeled 
a ( l ) ,  a ( 2 ) ,  . . . a(]Pl ) ,  and we have 1 1  Zi - Z,(l) I/ 5 d;  for 
2 5 k 5 lPl - 1, we have 11 l a ( k )  - l a (k+l )  I/ 5 d ;  and fi- 

We say that a set of nodes are connected if each pair of nodes 
is either directly or multi-hop connected, Otherwise, the set of 
nodes is partitioned. 

Let I,,,, 11,12 ,  . . . ,1,-1 E R2 be the locations of the source 
node and nodes 711, v2, . . . , wn-l respectively, and let V con- 
tain all the nodes. Let iV'(1i) be the maximal set of nodes con- 
tained in the area of radius d centered. at l i .  Specifically, we have 

nally l l  L(jPj) - l j  ll I d.  

N(1,) = {v, : w, E V and 111% - l,/j 5 d } .  
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Assume each node ha5 a transmission radius of d ,  the area 
covered by a node u, IS n d 2  centered at I , .  We use A(v,) to 

bound on the probability of a node requiring T = k transmis- 
sions to propagate a bit of information to all other n - 1 nodes 

denote the radial area covered by v i .  Suppose nodes 3: and y are 
directly connected. Ignoring edge effects, the maximum area 
where a third node z can reside such that z is directly connected 
to y but not to 2, is upper bounded by A(y) - [A(z) f~ A(y)]. 
Let cy = 27r i 3A. 

Lemmu I :  Suppose there exists nodes u,,vj at location 
li I ,  E R2 respectiveIy, such that / /  li - l j  / /  = d. If each node can 
cover an area with radius d ,  the non-overlapping area of either 
node vi or vj is $. 
Proof of Lemma 1 : Consider Figure 1, where two nodes are 
separated by distance d, and RF radial transmission distance of 
nodes w i  and uj are di and d j  respectively, where di = d ,  = d .  

Fig. 1. Non-overlapping area with respect to Node u j  

Each node covers area n d 2 .  Since I ,  (Node vi) and li (Node 
vj) are exactly d apart5 then there exists a perpendicular line 
between li and l j  such that it bisects the line joining li and l j .  

Thus, we can compute 8 in Figure 1 as 6 = c o s W 1 ( y )  = 
cos-] ( l /2 )  -= n/3. Since the angle representing the overlap is 
twice the angie 8, the area encompassed by the arc of the iwu 
points is i 2 0 d 2  = $~ 

Subtracting the triangular area encompassed by the arc, we 

Since the overlap occurs on both sides of the perpendicu- 
lar line bisecting the line joining li and Z j ,  we have 2A = 
(4n-:fi)dz ~ To obtain the amount of area A,,,(d) that is not 
overlapping, we have 

have a - r d z  2 I i( ad)( d )  - d - - (4r-3V5)d2 
3 2 2 2  3 4 1 2  ' 

A,,,(d) = n-d2 - 2A 
(4n - 3&)d2 

6 
- (2n + 3&)d2 

= n d 2 -  

- 
6 

For a number ofrandomly placed nodes each having a trans- 
mission radius d, we can write a topology connectivity proba- 
bility in terms of the exact number of transmissions required to 
propagate a bit of information to all other nodes. 

Let T,,, be the number of transmissions required to broadcast 
error free in a multi-hop manner from the source node. Assume 
that all the nodes n reside in an area A, such that 

(1) 
67r+a(n-2) 

6 
d .  An 2 

Theorem 2: Consider n nodes with broadcast radius d ran- 

is upper bounded by G(k> n ) ( d 2 / A n ) " - ' ,  where 

6n(2n + 3&)"'[4n - 3& + C X / C ] ~ - ' - ~  - 
G(k,n) = 671-1 

Using (I ) ,  we have 

Proof of Theorem 2: 
Let l(src) be the location of the source node. Let li be the lo- 
cation of vi, where 1 < i 5 n, - 1. For the broadcast of a bit 
from the source requiring a single transmission to another node 
vi, the receiving node must be within radius distance d of the 
source node, and so the probability o f  a single transmission to a 
single node, PT(T,,,(~) = l}, we have 

The probability of a single transmission from the source node 
to all other n - 1 nodes is p;,,it. For nodes to require multi- 
ple transmissions, the spatial allowable area not in contact with 
any other nodes, and thus requiring more transmissions, is upper 
bounded by the non-overlapping area between two nodes w.r.t. 
one of the nodes. Thus, the probability of broadcasting a bit 
over any transmission other than the first transmission, ptrans 
can be written as the probability of the source node propagating 

Iarger than d. The number of transmissions is lower bounded by 
the number of hops. Thus, using Lemma 1, we have 

2.1- L,uVUgL, - -. . -I. . ui . l o  traiijx,i: a bit to u3 o n n h  r)Ub.li tho,+ L * I c L L  n 2 '  40 I d  U L  n t  '. 9 A i c t i n r e  U . " L U * ' Y l  
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( 3 )  

For a total of n nodes where the source node needs to propagate 
over i transmissions to all of the other n - 1 nodes, there are 
n - 1 - i nodes that are allowed to placed anywhere within 
the allowable area o f  transmission. Thus, the probability of the 

upper bound of 

. .  
ii - 1 - i nodes iesidiiig ~ i t h i i i  thc tianSmissioii ais2 has an 

6.iid2 + (2n + 3 f i ) d 2 ( i  .- 1) 
6 P o t h e r s ( i 1  = - 

A n  

6-4, 
- [4n + 27ri + 3&2 - 3&]d2 

[4n - 3 6  + a i ] d 2  

- 

(4) - - 
64, 

Using (2) ,  (3 ) ,  and (4), we can upper bound the legitimate area 
required in order to transmit T,,,(n) = k as the probability of 

domly placed over area A, with uniform distribution. The upper at least one node contained in the initial space, at least one node 



contained in each of the non-overlapping spaces (equivalent to 
the k - 1 transmissions), and all other nodes contained anywhere 
among the allowable space. Thus, we have 

edge density: fewer edges simplifies the global scheduling. 
node degree: affects the number of time slots (or frequencies) 

needed in local scheduling, i.e., non-interfering nodes can use 
the same time slots (frequency) for local communication. 

number of biconnected components: this shows the number 
of weak points within the network. . size of largest biconnected component: used to measure the 
network robustness. 

In our simulation, we use sequential algorithms (single pro- 
cessor) to compute the graphs and then compare the graph prop- 
erties of the produced topologies. For a real application, these 
algorithms must be redesigned to be distributed* over the nodes. 

A. Minimum Radius (minR) 

ic-1 n-1-k 
P T P s r c ( n )  = k }  5 P f i r s t  ' Ptrans ' P o t h e r s ( k )  

k-1 

- - F. ($1 
n-1-k 

(5) 

1 , ([4?r - 3 z n +  akjd' 

d2 ( T I  -1) 
= G(k,  n) ~ . 

A2-1 

Combining (5) and (I), we obtain 

Pr(Th(n,) = k )  _< 

- < 

- 6 ? r ~ ~ - ~ [ 4 ~  - 3 6  + ak]TI-l-k 

Given a set of randomly placed nodes and assuming that each 
node must use the same transmission radius, we find the small- 
est radius d which guarantees network connectivity. Let s de- 
note the side of a square where s2 = A is the area where the 
nodes are randomly placed. The algorithm iteratively performs 
a binary search for the smallest d. In each iteration, the algo- 
rithm computes a graph with transmission radius d and checks 

decreased, otherwise, d is increased. The algorithm proceeds 
in iterations until we find the smallest d such that, using d ,  the 
communication graph is connected but when using d - 1, the 
communication graph is partitioned. The sequential computa- 
tional cost of this is O(n2 log s) . 

i*-os B. Relative Neighborhood Graph 

6nak--1[4?r - 3& + &]TI-1-kd2(TI-1) 

6"-1 ~ k - 1  

6 ~ & - 1 [ 4 n  - 3 6  + ak]n-1-kd2("-1)6"-1 

S n - l [ ( 6 r  + a(n - 2))d2]"-l  

1 if the graph is connected. If the graph is connected, then d is - 
( 6 ~  +  CY(^ - 

proving Theorem 2. 

Probmbii'l). Yer."I h irailrm,,s.onr '~-i " -20  

~ *e-io 1 . = " 

I 2 >*-E / : , o ; " ; : ; : : : , x ,  . I The relative neighborhood graph (RNG) of a node set V in 
Euclidean space is the graph G = (V, E ) ,  where (vii uj) E E 
if and only if there is no node v, E V such that / /  l i  - I ,  / /  < 
/ /  li  - l j  /I and / /  l j  - I ,  /I < 11 l i  - l j  / I ,  or equivalently, the 

1 i . l O  edge between nodes ui and vj is valid if there does not exists 
any node closer to both vi and vi. Referring back to Figure 1, 

LC.25 0 2 4 6 B 1u 12 1. L6 i.i 1Q a radius of /I I ,  - l j  1 1  is used for the pair of nodes vi and uj .  

Note that, in RNG, a different radius may be used for each pair 
of nodes, and so for Figure 1, we could have di f d j  ~ If the in- 
tersection of A(ui) and A(wj) does not contain any other nodes, 
then Node ui and Node uj are relative neighbors ( i s .  they are 
directly connected). The RNG is a super-graph of the minimum 
spanning tree, and it is a sub-graph of the Delaunay triangula- 
tion. Supowit[S] presented a sequential algorithm which takes 
O ( n  log n) operations to compute RNG. 

C. Minimum Spanning Tree 

Since the minimum spanning tree (MST) is a subgraph of 
RNG, we use RNG in the computation of MST. Note that RNG 

k :irnllill.Dnr 

Fig. 2 .  
spaced nodes. 

Probability of number of transmissions for n independent unifonnly 

As the above analysis of Theorem 2 and plot of Figure 2 
shows, the upper bound probability of successful information 
dissemination with a fixed number of transmissions is small 
given a lower bound constraint on the allowable area of uni- 
forrnly placing nodes. This result justifies providing some form 
of connectivity topology mapping prior to information dissemi- 
nation. 

111. COMPARING COMMUNICATION TOPOLOGIES 

As an initial study, we propose three classes of topologies 
and compare the graph properties of these by simulation. These 

is a subgraph of the Delaunay triangulation, and the Delaunay 
triangulation is a planar graph. Thus, the number of edges in 

graphs are: (1)  minimum radius, (2) relative neighborhood 
graph and ( 3 )  minimum spanning tree, we will discuss each 

graph properties we are interested in are: 

RNG is bounded by 3n - 6. we then Only need to examine 
O ( n )  edges for inclusiodexclusion in the MST. The algorithm 

est to longest. This takes O ( n  log n) operations. An edge is 
included in MST if it does not create a cycle in the graph. This 

class of graphs in more detail in forthcoming subsections. The first the edges with respect to the edge length, from short- 

radius: proportional to power over data rate. 
' hop diameter: the 
used as a lower bound for the number of transmissions. 

Of hops (network diameter) can be 'Since our main interest here is in the graph topologies, we do not consider 
the distributed computational complexity at this early stage. 



is performed by using disjoint sets. Nodes that are connected 
are placed in the same set. If the tested edge connects two nodes 
belonging to different sets, then the edge is added to MST and 
the two sets are unioned If the tested edge connects two nodes 
belonging to the same set, then this edge creates a cycle and it 
is rejected. The number of operations €or computing MST is 
bounded by O ( n ) ,  given the RNG is pre-computed. 

D. Simdafioii Results 

For our simulation+ runs, we generated n nodes, randomly 
placed in an area A, where 5 _< n 5 800, and A is a fixed 
area of 6002 units', and diagonal 6004 units. Two uniformly 
distributed random integers are generated as the coordinate of 
each node. For each n, we make 1000 runs. In each run, we use 
the same set of nodes for the computation of the minimum radius 
graph (minR), the relative neighborhood graph (III\IG) and the 
minimum spanning tree (iMST). 

radius: In mid?, every node is required to use the same ra- 
dius d;  thus, d is the smallest radius which renders a connected 
graph. For RNG and MST, the radius is the longest edge (in Eu- 
clidean distance) in the graphs, assuming different transmission 
radii were possible. Figure 3 shows the plot of the average max- 

From the simulation, we observe the following: 

J 
g 0.25 

3 0.2 

f 0.15 

z" 0.1 
\ 
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edge density: the edge density of a graph is computed rel- 
ative to the maximum number of all possible edges. A graph 
with n nodes can have at most 9 edges. Let this number 
be muxE. The density of a graph G = (Vi E )  is defined to be 
lE(/mazE, where density is a real number between 0 and 1. 
We can then compare the densities of MST, RNG and minR. 
From Figure 5, we observe that the edge densities of both MST 
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and RNG are very low. As a matter of fact, the plots of MST 
and RNG almost coincide with each other. In Figure 5 ,  minR 
has a higher edge density, however, it also decreases very fast as 

Fig. 3. Maximum transmission radius, averaged over 1000 runs. 

imum radius with respect to the number of nodes, normalized 
with respect to the diameter of A which is 6004. As expected, 
the radius decreases as the number of nodes increases for all 
three graphs. On the average, MST requires a smaller radius 
than RNG, where RNG requires a smaller radius than minR. 
Note that as n increases, the performance of RNG is closer to 
MST than it is to minR. 

hop diameter: the hop diameter of a network is the maxi- 
mum number of hops among the shortest paths connecting any 
pair of nodes. This can be used as a lower bound for the num- 
ber of transmissions required for broadcast. Therefore, it is im- 
portant to obtain a topology which minimizes the hop diameter. 
Note that, a partitioned network has hop diameter +oo. Figure 4 
shows the plot of hop diameters with respect to the number of 
nodes. On the average, minR has the lowest 'hop diameter and 
MST has the highest. It is worth noting that the RNG hop di- 
ameter is cIoser to the minR than it is to the MST, which means 
RNG is almost as good as minR in this respect. 

the number of node increases. This is to be expected because as 
n increases, the number of all possible edges increases quadrat- 
ically. On the other hand, as n increases, the radius in minR 
decreases (Figure 3), resulting in fewer edges. Thus, the edge 
density decreases. A lower edge density may lead to a shorter 
transmission schedule. 

node degree: the node degree is the number of neighbors 
having direct communication with the node. This affects the 
scheduling of transmissions. A higher node degree implies that 
a longer schedule is needed. For each graph, we find the node 
with the highest node degree, defined as the maximum degree of 
the graph. In Figure 6, RNG and MST have low node degrees 
compared to minR. As n increases, the maximum node degree in 
MST and RNG approaches a small constant. On the other hand, 
the maximum node degree of minR appears to increase linearly 
with respect to n. This makes RNG and MST more scalable 
when local scheduling is used. 

number of biconnected components: the number of bicon- 
nected components reveals the number of weak points within 

tLVe have implemented the sequential algorithms in JAVA (version 2.2) on a the network Since biconnected components are 'On- 
Sun Ultra-10 workstation. nected by articulation points whose failure results in a parti- 
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averaged over 1000 runs. 

fraction of nodes in largest biconnected component, normalized and 
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component in m i d  contains over 90% of the nodes. The per- 

RNG - 
then makes sense to look at a super-graph of MST which still 
has some of the good graph properties of the MST. For this, we 
proposed the RVG. The RNG also is good in terms of trans- 
mission radius, edge density, and maximum node degree. In 
addition, our simulation shows that for n 2 100 (or the node 
density 2 2 = & = A), the largest biconnected com- 
ponent of RNG contains at least 86% of the nodes. Although 
this is not as good as minR, it is close. The RNG may have 
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